scikit-learn(2) 線形サポートベクトルマシン

下記のBB本の続きだが、

カラー図解 Raspberry Piではじめる機械学習 基礎からディープラーニングまで

Google Colaboratory環境は、Piとほぼ同じとわかったので、これからの実験はGoogle Colaboratoryで行う。

線形サポートベクトルマシンのコードがよくわからないので、そのままコピペ

# -*- coding: utf-8 -*-
from sklearn import datasets, svm
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

# アヤメのデータをロードし、変数irisに格納
iris = datasets.load_iris()

# 特徴量のセットを変数Xに、ターゲットを変数yに格納
X = iris.data
y = iris.target

# 特徴量を外花被片の長さ(sepal length)と幅(sepal width)の
# 2つのみに制限(2次元で考えるため)
X = X[:,:2]

# ターゲットは2 (iris virginica) でないもの, 
# つまり iris setosa (0) と iris versicolor (1) のみを対象とする
# (領域の2分割)
X = X[y!=2]
y = y[y!=2]

# 分類用にサポートベクトルマシン (Support Vector Classifier) を用意
clf = svm.SVC(C=1.0, kernel='linear')
# データに最適化
clf.fit(X, y)

##### 分類結果を背景の色分けにより表示

# 外花被片の長さ(sepal length)と幅(sepal width)の
# 最小値と最大値からそれぞれ1ずつ広げた領域を
# グラフ表示エリアとする
x_min = min(X[:,0]) - 1
x_max = max(X[:,0]) + 1
y_min = min(X[:,1]) - 1
y_max = max(X[:,1]) + 1

# グラフ表示エリアを縦横500ずつのグリッドに区切る
# (分類クラスに応じて背景に色を塗るため)
XX, YY = np.mgrid[x_min:x_max:500j, y_min:y_max:500j]

# グリッドの点をscikit-learn用の入力に並べなおす
Xg = np.c_[XX.ravel(), YY.ravel()]

# 各グリッドの点が属するクラス(0か1)の予測をZに格納
Z = clf.predict(Xg)

# Zをグリッド上に並べなおす
Z = Z.reshape(XX.shape)

# クラス0 (iris setosa) が薄オレンジ (1, 0.93, 0.5, 1)
# クラス1 (iris versicolor) が薄青 (0.5, 1, 1, 1)
cmap01 = ListedColormap([(0.5, 1, 1, 1), (1, 0.93, 0.5, 1)])

# 背景の色を表示
plt.pcolormesh(XX, YY, Z==0, cmap=cmap01)

# 軸ラベルを設定
plt.xlabel('sepal length')
plt.ylabel('sepal width')

##### ターゲットに応じた色付きでデータ点を表示

# iris setosa (y=0) のデータのみを取り出す
Xc0 = X[y==0]
# iris versicolor (y=1) のデータのみを取り出す
Xc1 = X[y==1]

# iris setosa のデータXc0をプロット
plt.scatter(Xc0[:,0], Xc0[:,1], c='#E69F00', linewidths=0.5, edgecolors='black')
# iris versicolor のデータXc1をプロット
plt.scatter(Xc1[:,0], Xc1[:,1], c='#56B4E9', linewidths=0.5, edgecolors='black')

# サポートベクトルを取得
SV = clf.support_vectors_
# サポートベクトルの点に対し、赤い枠線を表示
plt.scatter(SV[:,0], SV[:,1], c=(0,0,0,0), linewidths=1.0, edgecolors='red')

# 描画したグラフを表示
plt.show()

結果の出力

Google Colaboratory(3) Pip Library List

Machine Learning に使うライブラリを確認するため、OSのコマンドラインに命令を送る。

!pip list

ずらずら出てきた。かなり長い。

Package                            Version    
---------------------------------- -----------
absl-py                            0.5.0      
altair                             2.2.2      
astor                              0.7.1      
backports-abc                      0.5        
backports.functools-lru-cache      1.5        
backports.shutil-get-terminal-size 1.0.0      
backports.weakref                  1.0.post1  
beautifulsoup4                     4.6.3      
bleach                             3.0.2      
cachetools                         2.1.0      
certifi                            2018.10.15 
chardet                            3.0.4      
configparser                       3.5.0      
crcmod                             1.7        
cycler                             0.10.0     
cymem                              2.0.2      
cytoolz                            0.9.0.1    
decorator                          4.3.0      
defusedxml                         0.5.0      
dill                               0.2.8.2    
entrypoints                        0.2.3      
enum34                             1.1.6      
funcsigs                           1.0.2      
functools32                        3.2.3.post2
future                             0.16.0     
futures                            3.2.0      
gast                               0.2.0      
google-api-core                    1.5.0      
google-api-python-client           1.6.7      
google-auth                        1.4.2      
google-auth-httplib2               0.0.3      
google-auth-oauthlib               0.2.0      
google-cloud-bigquery              1.1.0      
google-cloud-core                  0.28.1     
google-cloud-language              1.0.2      
google-cloud-storage               1.8.0      
google-cloud-translate             1.3.1      
google-colab                       0.0.1a1    
google-resumable-media             0.3.1      
googleapis-common-protos           1.5.3      
grpcio                             1.15.0     
h5py                               2.8.0      
httplib2                           0.11.3     
idna                               2.6        
ipykernel                          4.6.1      
ipython                            5.5.0      
ipython-genutils                   0.2.0      
Jinja2                             2.10       
joblib                             0.12.5     
jsonschema                         2.6.0      
jupyter-client                     5.2.3      
jupyter-core                       4.4.0      
Keras                              2.1.6      
Keras-Applications                 1.0.6      
Keras-Preprocessing                1.0.5      
Markdown                           3.0.1      
MarkupSafe                         1.0        
matplotlib                         2.1.2      
mistune                            0.8.4      
mock                               2.0.0      
mpmath                             1.0.0      
msgpack                            0.5.6      
msgpack-numpy                      0.4.3.2    
murmurhash                         1.0.1      
nbconvert                          5.4.0      
nbformat                           4.4.0      
networkx                           2.2        
nltk                               3.2.5      
notebook                           5.2.2      
numpy                              1.14.6     
oauth2client                       4.1.3      
oauthlib                           2.1.0      
olefile                            0.46       
opencv-python                      3.4.3.18   
pandas                             0.22.0     
pandas-gbq                         0.4.1      
pandocfilters                      1.4.2      
pathlib                            1.0.1      
pathlib2                           2.3.2      
patsy                              0.5.0      
pbr                                5.0.0      
pexpect                            4.6.0      
pickleshare                        0.7.5      
Pillow                             4.0.0      
pip                                18.1       
plac                               0.9.6      
plotly                             1.12.12    
portpicker                         1.2.0      
preshed                            2.0.1      
prompt-toolkit                     1.0.15     
protobuf                           3.6.1      
psutil                             5.4.7      
ptyprocess                         0.6.0      
pyasn1                             0.4.4      
pyasn1-modules                     0.2.2      
Pygments                           2.1.3      
pymc3                              3.5        
pyparsing                          2.2.2      
pystache                           0.5.4      
python-dateutil                    2.5.3      
pytz                               2018.5     
PyWavelets                         1.0.1      
PyYAML                             3.13       
pyzmq                              16.0.4     
regex                              2018.1.10  
requests                           2.18.4     
requests-oauthlib                  1.0.0      
rsa                                4.0        
scandir                            1.9.0      
scikit-image                       0.13.1     
scikit-learn                       0.19.2     
scipy                              0.19.1     
seaborn                            0.7.1      
setuptools                         40.4.3     
simplegeneric                      0.8.1      
singledispatch                     3.4.0.3    
six                                1.11.0     
spacy                              2.0.16     
statsmodels                        0.8.0      
subprocess32                       3.5.3      
sympy                              1.1.1      
tensorboard                        1.11.0     
tensorflow                         1.12.0rc1  
tensorflow-hub                     0.1.1      
termcolor                          1.1.0      
terminado                          0.8.1      
testpath                           0.4.2      
Theano                             1.0.3      
thinc                              6.12.0     
toolz                              0.9.0      
tornado                            4.5.3      
tqdm                               4.27.0     
traitlets                          4.3.2      
typing                             3.6.6      
ujson                              1.35       
uritemplate                        3.0.0      
urllib3                            1.22       
vega-datasets                      0.5.0      
wcwidth                            0.1.7      
webencodings                       0.5.1      
Werkzeug                           0.14.1     
wheel                              0.32.1     
wrapt                              1.10.11    
xgboost                            0.7.post4  

Blue Book の機械学習のRaspberry Piの環境と比べると、ほぼ同じといえる。

こちらでBlue Book の機械学習をやってみる。

Google Colaboratory(2) use OpenCV

「参考1」のコードはほぼ同じでできた。

コード

下記のコードをGoogle Colaboratoryにコピペ、lena_std.tifのファイルは別途用意する。

%matplotlib inline
import cv2 # opencvのインポート
import matplotlib.pyplot as plt # matplotlib(描画用)

print(cv2.__version__)


from google.colab import files #
f = files.upload() #ファイルアップロード


img=cv2.imread("./lena_std.tif")

show_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(show_img) #表示

lena_std.tifというファイルをアップロードして、imreadで読み込んで、plt.imshowで表示する。
(表示の前に、BGRをRGBに変換)。

参考

  1. https://qiita.com/kouki_outstand/items/ec1024cf0517f686ed7b

 

Google Colaboratory(1) Getting start

Google Colaboratoryとは

Google ColaboratoryはGoogleが機械学習の教育や研究用に提供しているツールである、Jupyter Notebook環境が無償で!使うことができる。

Google Colaboratoryの起動

Google Colaboratoryにブラウザでアクセスするだけ

リソースの確認

ノートブックを新規作成 > PYTHON 2の新しいノートブック または, PYTHON 3の新しいノートブック を選択

“!”をつけることで、Linuxのコマンドを実行することができます。
コードセルを追加し

!cat /proc/cpuinfo

長い出力を確認してください。

仮想マシンタイプスペック

Google Colaboratoryの仮想マシンタイプスペックの例:

  • n1-highmem-2 instance
  • Ubuntu 18.04
  • 2vCPU @ 2.2GHz
  • 13GB RAM
  • (GPUなし/ TPU)40GB, (GPUあり)360GB Storage
  • GPU NVIDIA Tesla K80 12GB
  • アイドル状態が90分続くと停止
  • 連続使用は最大12時間
  • Notebookサイズは最大20MB

複数のマシンのブラウザから開けるので、ペア・プログラミングが便利かも。

 

scikit-learn(1) Install

scikit-learn のインストール

機械学習入門に、環境構築は手間がとるので、下記の本を参考に、Raspberry Piではじめる。

カラー図解 Raspberry Piではじめる機械学習 基礎からディープラーニングまで

$ sudo apt update

$ sudo apt install python-sklearn

バージョン確認

プログラムは、下記の書籍付録サイトからダウンロードしてください。

http://bluebacks.kodansha.co.jp/special/ml.html

次のコマンドを実行する

$ python ml-03-01-version.py

Raspberry Pi3の結果

???

 

Ubuntu 16.04環境下の出力、Piより古いとわかった。

# python ml-03-01-version.py
scikit-learnのバージョンは0.17です
numpyのバージョンは1.11.0です
scipyのバージョンは0.17.0です
matplotlibのバージョンは1.5.1です
PIL(Pillow)のバージョンは3.1.2です
kerasがインストールされていないか、まだ設定が済んでいません
theanoはインストールされていません
root@jupiter:~/mlbb# ^C
root@jupiter:~/mlbb#

Google Colaboratory環境下の出力、Piより新しいとわかった。

Using TensorFlow backend.
scikit-learnのバージョンは0.19.2です
numpyのバージョンは1.14.6です
scipyのバージョンは0.19.1です
matplotlibのバージョンは2.1.2です
PIL(Pillow)のバージョンは4.0.0です
kerasのバージョンは2.1.6です
theanoのバージョンは1.0.3です

 

参考